
Package: testdat (via r-universe)
June 6, 2024

Type Package

Title Data Unit Testing for R

Version 0.4.2.9000

Description Test your data! An extension of the 'testthat' unit
testing framework with a family of functions and reporting
tools for checking and validating data frames.

License MIT + file LICENSE

URL https://socialresearchcentre.github.io/testdat/,

https://github.com/socialresearchcentre/testdat

BugReports https://github.com/socialresearchcentre/testdat/issues

Depends R (>= 3.2.2), testthat (>= 2.0.0)

Imports dplyr (>= 0.8.0), glue, lifecycle, rlang, stringr, tidyselect

Suggests covr, crayon, knitr, labelled, lubridate, openxlsx, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Collate 'chk-filter.R' 'chk.R' 'comparison.R' 'deprec-chk.R'
'deprec-expect.R' 'deprec-reporter.R' 'expectation.R'
'expect-generic.R' 'expect-make.R' 'expect-chk.R'
'expect-conditional.R' 'expect-data.R' 'expect-datacomp.R'
'expect-exclusive.R' 'expect-labels.R' 'expect-proportion.R'
'expect-unique.R' 'expect_depends.R' 'reporter-excel.R'
'reporter-zzz.R' 'testdat-package.R' 'utils.R' 'zzz.R'

Repository https://socialresearchcentre.r-universe.dev

RemoteUrl https://github.com/socialresearchcentre/testdat

RemoteRef HEAD

RemoteSha a725e2d9ea81785cebd2a3c3db2dc97a81ce9745

1

https://socialresearchcentre.github.io/testdat/
https://github.com/socialresearchcentre/testdat
https://github.com/socialresearchcentre/testdat/issues

2 chk-dates

Contents
chk-dates . 2
chk-dummy . 3
chk-helper . 4
chk-labels . 5
chk-patterns . 7
chk-text . 8
chk-uniqueness . 9
chk-values . 9
conditional-expectations . 11
datacomp-expectations . 12
date-expectations . 14
exclusivity-expectations . 15
expect_depends . 16
expect_make . 17
generic-expectations . 18
global-data . 20
label-expectations . 21
output_results_excel . 23
pattern-expectations . 24
proportion-expectations . 25
text-expectations . 27
uniqueness-expectations . 28
value-expectations . 30

Index 32

chk-dates Checks: dates

Description

Check that a vector conforms to a given date format such as YYYYMMDD.

Usage

chk_date_yyyymmdd(x)

chk_date_yyyymm(x)

chk_date_yyyy(x)

Arguments

x A vector to check.

chk-dummy 3

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: dates

Other vector checks: chk-dummy, chk-labels, chk-patterns, chk-text, chk-uniqueness, chk-values

Examples

date <- c(20210101, 20211301, 20210132, 202101, 2021)
chk_date_yyyymmdd(date)

date <- c(202101, 202112, 202113, 2021)
chk_date_yyyymm(date)

date <- c("0001", "1688", "1775", "1789", "1791", "1848")
chk_date_yyyy(date)

chk-dummy Checks: dummy

Description

These functions provide common, simple data checks.

Usage

chk_dummy(x)

Arguments

x A vector to check.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Other vector checks: chk-dates, chk-labels, chk-patterns, chk-text, chk-uniqueness, chk-values

Examples

chk_dummy(LETTERS)

4 chk-helper

chk-helper Checks: data frame helpers

Description

These helper functions allowing easy checking using an arbitrary function (func) over multiple
columns (vars) of a data frame (data), with an optional filter (flt).

Usage

chk_filter(data, vars, func, flt = TRUE, args = list())

chk_filter_all(data, vars, func, flt = TRUE, args = list())

chk_filter_any(data, vars, func, flt = TRUE, args = list())

Arguments

data A data frame to check.

vars <tidy-select> A set of columns to check.

func A function to use for checking that takes a vector as the first argument and
returns a logical vector of the same length showing whether an element passed
or failed.

flt <data-masking> A filter specifying a subset of the data frame to test.

args A list of additional arguments to be added to the function calls.

Details

• chk_filter() applies func with args to vars in data filtered with flt and returns a data
frame containing the resulting logical vectors.

• chk_filter_all() and chk_filter_any() both run chk_filter() and return a single log-
ical vector flagging whether all or any values in each row are TRUE (i.e. the conjunction and
disjunction, respectively, of the columns in the output of chk_filter()).

Value

A logical vector or data frame of logical vectors flagging records that have passed or failed the
check, with NA where records do not meet the filter condition.

See Also

Other chk_*() functions such as chk_values()

chk-labels 5

Examples

Check that every 4-cylinder car has an engine displacement of < 100 cubic
inches AND < 100 horsepower - return a data frame
chk_filter(

mtcars,
c("disp", "hp"),
chk_range,
cyl == 4,
list(min = 0, max = 100)

)

Check that every 4-cylinder car has an engine displacement of < 100 cubic
inches AND < 100 horsepower
chk_filter_all(

mtcars,
c("disp", "hp"),
chk_range,
cyl == 4,
list(min = 0, max = 100)

)

Check that every 4-cylinder car has an engine displacement of < 100 cubic
inches OR < 100 horsepower
chk_filter_any(

mtcars,
c("disp", "hp"),
chk_range,
cyl == 4,
list(min = 0, max = 100)

)

Check that columns made up of whole numbers are binary
chk_filter_all(

mtcars,
where(~ all(. %% 1 == 0)),
chk_values,
TRUE,
list(0:1)

)

chk-labels Checks: labels

Description

Check that a vector is labelled in a given way.

Usage

chk_labels(x, val_labels = NULL, var_label = NULL)

6 chk-labels

Arguments

x A vector to check.

val_labels What value label check should be performed? One of:

• A character vector of expected value labels.
• A named vector of expected label-value pairs.
• TRUE to test for the presence of value labels in general.
• FALSE to test for the absence of value labels.
• NULL to ignore value labels when checking.

var_label What variable label check should be performed? One of:

• A character vector of expected variable labels.
• TRUE to test for the presence of a variable labels.
• FALSE to test for the absence of a variable labels.
• NULL to ignore the variable label when checking.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: labels

Other vector checks: chk-dates, chk-dummy, chk-patterns, chk-text, chk-uniqueness, chk-values

Examples

df <- data.frame(
x = labelled::labelled(c("M", "M", "F"), c(Male = "M", Female = "F"), "Sex"),
y = labelled::labelled(c("M", "M", "F"), c(Male = "M", Female = "F", Other = "X")),
z = c("M", "M", "F")

)

Check for a value-label pairing
chk_labels(df$x, c(Male = "M"))

Check that two variables have the same values
chk_labels(df$x, labelled::val_labels(df$y))

Check for the presence of a particular label
chk_labels(df$x, "Male")
chk_labels(df$x, var_label = "Sex")

Check that a variable is labelled at all
chk_labels(df$z, val_labels = TRUE)
chk_labels(df$z, var_label = TRUE)

Check that a variable isn't labelled

chk-patterns 7

chk_labels(df$z, val_labels = FALSE)
chk_labels(df$z, var_label = FALSE)

chk-patterns Checks: patterns

Description

Check that a vector conforms to a certain pattern.

Usage

chk_regex(x, pattern)

chk_max_length(x, len)

Arguments

x A vector to check.

pattern A str_detect() pattern to match.

len Maximum string length.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: patterns

Other vector checks: chk-dates, chk-dummy, chk-labels, chk-text, chk-uniqueness, chk-values

Examples

x <- c("a_1", "b_2", "c_2", NA, "NULL")
chk_regex(x, "[a-z]_[0-9]")
chk_max_length(x, 3)

8 chk-text

chk-text Checks: text

Description

Check character vectors for non-ASCII characters or common NULL value placeholders.

Usage

chk_ascii(x)

chk_text_miss(x, miss = getOption("testdat.miss_text"))

chk_text_nmiss(x, miss = getOption("testdat.miss_text"))

Arguments

x A vector to check.

miss A vector of values to be treated as missing. The testdat.miss or testdat.miss_text
option is used by default.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: text

Other vector checks: chk-dates, chk-dummy, chk-labels, chk-patterns, chk-uniqueness,
chk-values

Examples

chk_ascii(c("a", "\U1f642")) # detect non-ASCII characters

imported_data <- c(1, "#n/a", 2, "", 3, NA)
chk_text_miss(imported_data)
chk_text_nmiss(imported_data) # Equivalent to !chk_text_miss(imported_data)

chk-uniqueness 9

chk-uniqueness Checks: uniqueness

Description

Check that each value in a vector is unique.

Usage

chk_unique(x)

Arguments

x A vector to check.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: uniqueness

Other vector checks: chk-dates, chk-dummy, chk-labels, chk-patterns, chk-text, chk-values

Examples

x <- c(NA, 1:10, NA)
chk_unique(x)

x <- c(10, 1:10, 10)
chk_unique(x)

chk-values Checks: values

Description

Check that a vector contains only certain values.

10 chk-values

Usage

chk_equals(x, val)

chk_values(x, ..., miss = getOption("testdat.miss"))

chk_range(x, min, max, ...)

chk_blank(x)

Arguments

x A vector to check.

val A scalar value for the equality check.

... Vectors of valid values.

miss A vector of values to be treated as missing. The testdat.miss or testdat.miss_text
option is used by default.

min Minimum value for range check.

max Maximum value for range check.

Value

A logical vector flagging records that have passed or failed the check.

See Also

Checks: data frame helpers

Expectations: values

Other vector checks: chk-dates, chk-dummy, chk-labels, chk-patterns, chk-text, chk-uniqueness

Examples

x <- c(NA, 0, 1, 0.5, 0, NA, 99)
chk_blank(x) # Blank
chk_equals(x, 0) # Either blank or 0
chk_values(x, 0, 1) # Either blank, 0, 1, or 99
chk_range(x, 0, 1) # Either blank or in [0,1]
chk_range(x, 0, 1, 99) # Either blank, in [0,1], or equal to 99

conditional-expectations 11

conditional-expectations

Expectations: consistency

Description

These functions test whether multiple conditions coexist.

Usage

expect_cond(cond1, cond2, data = get_testdata())

expect_base(
var,
base,
miss = getOption("testdat.miss"),
missing_valid = FALSE,
data = get_testdata()

)

Arguments

cond1 <data-masking> First condition (antecedent) for consistency check.

cond2 <data-masking> Second condition (consequent) for consistency check.

data A data frame to test. The global test data is used by default.

var An unquoted column name to test.

base <data-masking> The condition that determines which records should be non-
missing.

miss A vector of values to be treated as missing. The testdat.miss option is used by
default.

missing_valid Should missing values be treated as valid for records meeting the base condi-
tion? This allows ’one way’ base checks. This is FALSE by default.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

Functions

• expect_cond(): Checks the coexistence of two conditions. It can be read as "if cond1 then
cond2".

• expect_base(): A special case that checks missing data against a specified condition. It can
be read as "if base then var not missing, if not base then var missing".

12 datacomp-expectations

See Also

Other data expectations: datacomp-expectations, date-expectations, exclusivity-expectations,
expect_depends(), generic-expectations, label-expectations, pattern-expectations, proportion-expectations,
text-expectations, uniqueness-expectations, value-expectations

Examples

my_survey <- data.frame(
resp_id = 1:5,
q1a = c(0, 1, 0, 1, 0),
q1b = c(NA, NA, NA, 1, 0), # Asked if q1a %in% 1
q2a = c(90, 80, 60, 40, 90),
q2b = c("", "", NA, "Some reason for low rating", "") # Asked if q2a < 50

)

Check that q1b has a value if and only if q1a %in% 1
try(expect_base(q1b, q1a %in% 1, data = my_survey)) # Fails for resp_id 2 and 5

Check that q2b has a value if and only if q2a < 50
expect_base(q2b, q2a < 50, data = my_survey)

Check that if q1a %in% 0 then q2a > 50 (but not vice-versa)
expect_cond(q1a %in% 0, q2a > 50, data = my_survey)

datacomp-expectations Expectations: comparisons

Description

[Experimental]

These functions allow for comparison between two data frames.

Usage

expect_valmatch(
data2,
vars,
by,
not = FALSE,
flt = TRUE,
data = get_testdata()

)

expect_subset(data2, by = NULL, not = FALSE, flt = TRUE, data = get_testdata())

datacomp-expectations 13

Arguments

data2 The data frame to compare against.

vars <tidy-select> A set of columns to test.

by A character vector of columns to join by. See dplyr::join() for details.

not Reverse the results of the check?

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Details

• expect_valmatch() compares the observations appearing in one data frame (data) to the
same observations, as picked out by a key (by), in another data frame (data2). It fails if the
selected columns (vars) aren’t the same for those observations in both data frames.

• expect_subset() compares one data frame (data) to another (data2) and fails if all of the
observations in the first, as picked out by a key (by), do not appear in the second.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Other data expectations: conditional-expectations, date-expectations, exclusivity-expectations,
expect_depends(), generic-expectations, label-expectations, pattern-expectations, proportion-expectations,
text-expectations, uniqueness-expectations, value-expectations

Examples

df1 <- data.frame(
id = 0:99,
binomial = sample(0:1, 100, TRUE),
even = abs(0:99%%2 - 1) * 0:99

)

df2 <- data.frame(
id = 0:99,
binomial = sample(0:1, 100, TRUE),
odd = 0:99%%2 *0:99

)

Check that same records 'succeeded' across data frames
try(expect_valmatch(df2, binomial, by = "id", data = df1))

Check that all records in `df1`, as picked out by `id`, exist in `df2`
expect_subset(df2, by = "id", data = df1)

14 date-expectations

date-expectations Expectations: dates

Description

Test whether variables in a data frame conform to a given date format such as YYYYMMDD.

Usage

expect_date_yyyy(vars, flt = TRUE, data = get_testdata())

expect_date_yyyymm(vars, flt = TRUE, data = get_testdata())

expect_date_yyyymmdd(vars, flt = TRUE, data = get_testdata())

Arguments

vars <tidy-select> A set of columns to test.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Checks: date

Other data expectations: conditional-expectations, datacomp-expectations, exclusivity-expectations,
expect_depends(), generic-expectations, label-expectations, pattern-expectations, proportion-expectations,
text-expectations, uniqueness-expectations, value-expectations

Examples

sales <- data.frame(
sale_id = 1:5,
date = c("20200101", "20200101", "20200102", "20200103", "20220101"),
quarter = c(202006, 202009, 202012, 20203, 20200101),
published = c(1999, 19991, 21, 0001, 20200101)

)

try(expect_date_yyyymmdd(date, data = sales)) # Full date of sale valid
try(expect_date_yyyymm(quarter, data = sales)) # Quarters given as YYYYMM
try(expect_date_yyyy(published, data = sales)) # Publication years valid

exclusivity-expectations 15

exclusivity-expectations

Expectations: exclusivity

Description

expect_exclusive tests that vars are exclusive - that, if any one of vars is set to exc_val, no
other column in vars or var_set is also set to exc_val.

Usage

expect_exclusive(vars, var_set, exc_val = 1, flt = TRUE, data = get_testdata())

Arguments

vars <tidy-select> A set of columns to test.

var_set <tidy-select> The full set of columns to check against. This should include
all columns specified in the vars argument.

exc_val The value that flags a variable as "selected" (default: 1)

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Details

This expectation is designed to check exclusivity in survey multiple response sets, where one re-
sponse is only valid on its own.

See the example data set below:

• No record should have q10_98, "None of the above", selected while also having any other
response selected, so we refer to this as an "exclusive" response.

• expect_exclusive() checks whether q10_98 "None of the above" or q10_99 "Don’t know",
the exclusive responses, have been selected alongside any other q10_* response.

• The expectation fails, since the first record has both q10_1 and q10_98 selected.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
expect_depends(), generic-expectations, label-expectations, pattern-expectations, proportion-expectations,
text-expectations, uniqueness-expectations, value-expectations

16 expect_depends

Examples

my_q_block <- data.frame(
resp_id = 1:5, # Unique to respondent
q10_1 = c(1, 1, 0, 0, 0),
q10_2 = c(0, 1, 0, 0, 0),
q10_3 = c(0, 0, 1, 0, 0),
q10_98 = c(1, 0, 0, 1, 0), # None of the above
q10_99 = c(0, 0, 0, 0, 1) # Item not answered

)

Make sure that if "None of the above" and "Item skipped" are selected
none of the other question options are selected:
try(
expect_exclusive(

c(q10_98, q10_99),
starts_with("q10_"),
data = my_q_block

)
)

expect_depends Expectations: functional dependency

Description

Test whether one set of variables functionally depend on another set of variables.

Usage

expect_depends(vars, on, flt = TRUE, data = get_testdata())

Arguments

vars <tidy-select> A set of columns to test.

on <tidy-select> A set of columns which vars are expected to depend on.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Details

One set of variables, X, functionally depends on another, Y, if and only if each value in Y cor-
responds to exactly one value in X. For instance, course_duration and course_topic func-
tionally depend on course_code if each course_code corresponds to just one combination of
course_duration and course topic. That is, if two records have the same course_code then
they must have the same course_duration and course_topic.

See the wikipedia page for more information.

https://en.wikipedia.org/wiki/Functional_dependency

expect_make 17

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, generic-expectations, label-expectations, pattern-expectations,
proportion-expectations, text-expectations, uniqueness-expectations, value-expectations

Examples

student_course <- data.frame(
student_id = 1:5,
course_code = c(1, 2, 1, 3, 4),
course_duration = c(12, 12, 12, 12, 12),
course_topic = c("Song", "Dance", "Song", "Painting", "Pottery")

)

Check that each `course_code` corresponds to exactly one combination of
`course_duration` and `course_topic`
expect_depends(

c(course_duration, course_topic),
on = course_code,
data = student_course

)

expect_make Create an expectation from a check function

Description

expect_make() creates an expectation from a vectorised checking function to allow simple gener-
ation of domain specific data checks.

Usage

expect_make(
func,
func_desc = NULL,
vars = FALSE,
all = TRUE,
env = caller_env()

)

18 generic-expectations

Arguments

func A function whose first argument takes a vector to check, and returns a logical
vector of the same length with the results.

func_desc A character function description to use in the expectation failure message.

vars Included for backwards compatibility only.

all Function to use to combine results for each vector.

env The parent environment of the function, defaults to the calling environment of
expect_make().

Value

An expect_*() style function.

Examples

Create a custom check
chk_binary <- function(x) {

suppressWarnings(as.integer(x) %in% 0:1)
}

Create custom expectation function
expect_binary <- expect_make(chk_binary)

Validate a data frame
try(expect_binary(vs, data = mtcars))
try(expect_binary(cyl, data = mtcars))

generic-expectations Expectations: generic helpers

Description

These functions allow for testing of multiple columns (vars) of a data frame (data), with an op-
tional filter (flt), using an arbitrary function (func).

Usage

expect_all(
vars,
func,
flt = TRUE,
data = get_testdata(),
args = list(),
func_desc = NULL

)

generic-expectations 19

expect_any(
vars,
func,
flt = TRUE,
data = get_testdata(),
args = list(),
func_desc = NULL

)

Arguments

vars <tidy-select> A set of columns to test.

func A function to use for testing that takes a vector as the first argument and returns
a logical vector of the same length showing whether an element passed or failed.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

args A named list of arguments to pass to func.

func_desc A human friendly description of func to use in the expectation failure message.

Details

• expect_allany() tests the columns in vars to see whether func returns TRUE for each of
them, and combines the results for each row using the function in allany. Both expect_all()
and expect_any() are wrappers around expect_allany().

• expect_all() tests the vars to see whether func returns TRUE for all of them (i.e. whether
the conjunction of results of applying func to each of the vars is TRUE).

• expect_any() tests the vars to see whether func returns TRUE for any of them (i.e. whether
the disjunction of the results of applying func to each of the vars is TRUE).

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also
chk_*() functions such as chk_values()

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), label-expectations, pattern-expectations,
proportion-expectations, text-expectations, uniqueness-expectations, value-expectations

Examples

Check that every 4-cylinder car has an engine displacement of < 100 cubic
inches *AND* < 100 horsepower
try(
expect_all(

20 global-data

vars = c(disp, hp),
func = chk_range,
flt = (cyl == 4),
args = list(min = 0, max = 100),
data = mtcars

)
)

Check that every 4-cylinder car has an engine displacement of < 100 cubic
inches *OR* < 100 horsepower
try(
expect_any(

vars = c(disp, hp),
func = chk_range,
flt = (cyl == 4),
args = list(min = 0, max = 100),
data = mtcars

)
)

Check that all variables are numeric:
try(expect_all(

vars = everything(),
func = is.numeric,
data = iris

))

global-data Get/set test data

Description

A global test data set is used to avoid having to re-specify the testing data frame in every test. These
functions get and set the global data or set the data for the current context.

Usage

set_testdata(data, quosure = TRUE)

get_testdata()

with_testdata(data, code, quosure = TRUE)

data %E>% code

Arguments

data Data frame to be used.

label-expectations 21

quosure If TRUE, the default, the data frame is stored as a quosure and lazily evaluated
when get_testdata() is called, so get_testdata() will return the current
state of the data frame.
If FALSE, the data frame will be copied and get_testdata() will return the
state of the data frame at the time set_testdata() was called.

code Code to execute with the test data set to data.

Value

• set_testdata() invisibly returns the previous test data. The test data is returned as it was
stored - if it was stored with quosure = TRUE it will be returned as a quosure.

• get_testdata() returns the current test data frame.

• with_testdata() and the test data pipe %E>% invisibly return the input data for easy piping.

Examples

set_testdata(mtcars)
head(get_testdata())

with_testdata(iris, {
x <- get_testdata()
print(head(x))

})

mtcars %E>%
expect_base(mpg, TRUE) %E>%
expect_range(carb, 1, 8)

label-expectations Expectations: labels

Description

Test whether variables in a data frame are labelled in a given way.

Usage

expect_labels(
vars,
val_labels = NULL,
var_label = NULL,
flt = TRUE,
data = get_testdata()

)

22 label-expectations

Arguments

vars <tidy-select> A set of columns to test.

val_labels What value label check should be performed? One of:

• A character vector of expected value labels.
• A named vector of expected label-value pairs.
• TRUE to test for the presence of value labels in general.
• FALSE to test for the absence of value labels.
• NULL to ignore value labels when checking.

var_label What variable label check should be performed? One of:

• A character vector of expected variable labels.
• TRUE to test for the presence of a variable labels.
• FALSE to test for the absence of a variable labels.
• NULL to ignore the variable label when checking.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Checks: labels

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, pattern-expectations,
proportion-expectations, text-expectations, uniqueness-expectations, value-expectations

Examples

df <- data.frame(
x = labelled::labelled(c("M", "M", "F"), c(Male = "M", Female = "F"), "Sex"),
y = labelled::labelled(c("M", "M", "F"), c(Male = "M", Female = "F", Other = "X")),
z = c("M", "M", "F")

)

Check for a value-label pairing
try(expect_labels(x, c(Male = "M"), data = df))

Check that two variables have the same values
expect_labels(x, labelled::val_labels(df$y), data = df) # N.B. This passes!

Check for the presence of a particular label
try(expect_labels(x, "Male", data = df))
expect_labels(x, var_label = "Sex", data = df)

output_results_excel 23

Check that a variable is labelled at all
try(expect_labels(z, val_labels = TRUE, data = df))
try(expect_labels(z, var_label = TRUE, data = df))

Check that a variable isn't labelled
expect_labels(z, val_labels = FALSE, data = df)
expect_labels(z, var_label = FALSE, data = df)

output_results_excel Output ListReporter results in Excel format

Description

Output formatted ListReporter results to an Excel workbook using openxlsx. The workbook
consists of a summary sheet showing aggregated results for each context, and one sheet per context
showing details of each unsuccessful test.

Usage

output_results_excel(results, file)

Arguments

results An object of class testthat_results, e.g. output from test_dir() or test_file().

file Output file name

Value

The return value of openxlsx::saveWorkbook().

Examples

Not run:
Output the results from running all tests in a directory
x <- test_dir(".")
output_results_excel(x, "Test results.xlsx")

End(Not run)

24 pattern-expectations

pattern-expectations Expectations: patterns

Description

Test whether variables in a data frame conform to a given pattern.

Usage

expect_regex(vars, pattern, flt = TRUE, data = get_testdata())

expect_max_length(vars, len, flt = TRUE, data = get_testdata())

Arguments

vars <tidy-select> A set of columns to test.

pattern A str_detect() pattern to match.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

len Maximum string length.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Checks: patterns

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, label-expectations,
proportion-expectations, text-expectations, uniqueness-expectations, value-expectations

Examples

sales <- data.frame(
sale_id = 1:5,
item_code = c("a_1", "b_2", "c_2", NA, "NULL")

)

try(expect_regex(item_code, "[a-z]_[0-9]", data = sales)) # Codes match regex
try(expect_max_length(item_code, 3, data = sales)) # Code width <= 3

proportion-expectations 25

proportion-expectations

Expectations: proportions

Description

These test the proportion of data in a data frame satisfying some condition. The generic func-
tions, expect_prop_lte() and expect_prop_gte(), can be used with any arbitrary function. The
chk_*() functions, like chk_values(), are useful in this regard.

Usage

expect_prop_lte(
var,
func,
prop,
flt = TRUE,
data = get_testdata(),
args = list(),
func_desc = NULL

)

expect_prop_gte(
var,
func,
prop,
flt = TRUE,
data = get_testdata(),
args = list(),
func_desc = NULL

)

expect_prop_nmiss(
var,
prop,
miss = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()

)

expect_prop_values(var, prop, ..., flt = TRUE, data = get_testdata())

Arguments

var An unquoted column name to test.

func A function to use for testing that takes a vector as the first argument and returns
a logical vector of the same length showing whether an element passed or failed.

26 proportion-expectations

prop The proportion of the data frame expected to satisfy the condition.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

args A named list of arguments to pass to func.

func_desc A human friendly description of func to use in the expectation failure message.

miss A vector of values to be treated as missing. The testdat.miss option is used by
default.

... Vectors of valid values.

Details

Given the use of quasi-quotation within these functions, to make a new functions using one of
the generics such as expect_prop_gte() one must defuse the var argument using the embracing
operator {{ }}. See the examples sections for an example.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also
chk_*() functions such as chk_values()

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, label-expectations,
pattern-expectations, text-expectations, uniqueness-expectations, value-expectations

Examples

sales <- data.frame(
sale_id = 1:5,
date = c("20200101", "20200101", "20200102", "20200103", "2020003"),
sale_price = c(10, 20, 30, 40, -1),
book_title = c(
"Phenomenology of Spirit",
NA,
"Critique of Practical Reason",
"Spirit of Trust",
"Empiricism and the Philosophy of Mind"

),
stringsAsFactors = FALSE

)

Create a custom expectation
expect_prop_length <- function(var, len, prop, data) {

expect_prop_gte(
var = {{var}}, # Notice the use of the embracing operator
func = chk_max_length,
prop = prop,

text-expectations 27

data = data,
args = list(len = len),
func_desc = "length_check"

)
}

Use it to check that dates are mostly <= 8 char wide
expect_prop_length(date, 8, 0.9, sales)

Check price values mostly between 0 and 100
try(expect_prop_values(sale_price, 0.9, 1:100, data = sales))

text-expectations Expectations: text

Description

Test whether variables in a data frame contain common NULL placeholders.

Usage

expect_text_miss(
vars,
miss = getOption("testdat.miss_text"),
flt = TRUE,
data = get_testdata()

)

expect_text_nmiss(
vars,
miss = getOption("testdat.miss_text"),
flt = TRUE,
data = get_testdata()

)

Arguments

vars <tidy-select> A set of columns to test.
miss A vector of values to be treated as missing. The testdat.miss or testdat.miss_text

option is used by default.
flt <data-masking> A filter specifying a subset of the data frame to test.
data A data frame to test. The global test data is used by default.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

28 uniqueness-expectations

See Also

Checks: text

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, label-expectations,
pattern-expectations, proportion-expectations, uniqueness-expectations, value-expectations

Examples

sales <- data.frame(
sale_id = 1:5,
date = c("20200101", "null", "20200102", "20200103", "null"),
sale_price = c(10, -1, 30, 40, -1)

)

Dates not missing
try(expect_text_nmiss(date, data = sales))

Date missing if price negative
try(expect_text_miss(date, flt = sale_price %in% -1, data = sales))

uniqueness-expectations

Expectations: uniqueness

Description

These functions test variables for uniqueness.

Usage

expect_unique(
vars,
exclude = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()

)

expect_unique_across(
vars,
exclude = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()

)

expect_unique_combine(
vars,

uniqueness-expectations 29

exclude = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()

)

Arguments

vars <tidy-select> A set of columns to test.

exclude a vector of values to exclude from uniqueness check. The testdat.miss option is
used by default. To include all values, set exclude = NULL.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

Details

• expect_unique() tests a set of columns (vars) and fails if the combined columns do not
uniquely identify each row.

• expect_unique_across() tests a set of columns (vars) and fails if each row does not have
unique values in each column.

• expect_unique_combine() tests a set of columns (vars) and fails if any value appears more
than once across all of them.

By default the uniqueness check excludes missing values (as specified by the testdat.miss option).
Setting exclude = NULL will include all values.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Checks: uniqueness

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, label-expectations,
pattern-expectations, proportion-expectations, text-expectations, value-expectations

Examples

student_fruit_preferences <- data.frame(
student_id = c(1:5, NA, NA),
apple = c(1, 1, 1, 1, 99, NA, NA),
orange = c(2, 3, 2, 3, 99, NA, NA),
banana = c(3, 2, 3, 2, 99, NA, NA),
phone1 = c(123, 456, 789, 987, 654, NA, NA),
phone2 = c(345, 678, 987, 567, 000, NA, NA)

)

30 value-expectations

Check that key is unique, excluding NAs by default
expect_unique(student_id, data = student_fruit_preferences)

Check that key is unique, including NAs
try(expect_unique(student_id, exclude = NULL, data = student_fruit_preferences))

Check each fruit has unique preference number
try(
expect_unique_across(

c(apple, orange, banana),
data = student_fruit_preferences

)
)

Check each fruit has unique preference number, allowing multiple 99 (item
skipped) codes
expect_unique_across(

c(apple, orange, banana),
exclude = c(99, NA), data = student_fruit_preferences

)

Check that each phone number appears at most once
try(expect_unique_combine(c(phone1, phone2), data = student_fruit_preferences))

value-expectations Expectations: values

Description

Test whether variables in a data frame contain only certain values.

Usage

expect_values(
vars,
...,
miss = getOption("testdat.miss"),
flt = TRUE,
data = get_testdata()

)

expect_range(vars, min, max, ..., flt = TRUE, data = get_testdata())

Arguments

vars <tidy-select> A set of columns to test.

... Vectors of valid values.

value-expectations 31

miss A vector of values to be treated as missing. The testdat.miss or testdat.miss_text
option is used by default.

flt <data-masking> A filter specifying a subset of the data frame to test.

data A data frame to test. The global test data is used by default.

min Minimum value for range check.

max Maximum value for range check.

Value
expect_*() functions are mainly called for their side effects. The expectation signals its result
(e.g. "success", "failure"), which is logged by the current test reporter. In a non-testing context the
expectation will raise an error with class expectation_failure if it fails.

See Also

Checks: values

Other data expectations: conditional-expectations, datacomp-expectations, date-expectations,
exclusivity-expectations, expect_depends(), generic-expectations, label-expectations,
pattern-expectations, proportion-expectations, text-expectations, uniqueness-expectations

Examples

sales <- data.frame(
sale_id = 1:5,
date = c("20200101", "20200101", "20200102", "20200103", "20220101"),
sale_price = c(10, 20, 30, 40, -1)

)

try(expect_values(date, 20000000:20210000, data = sales)) # Dates between 2000 and 2021
try(expect_range(sale_price, min = 0, max = Inf, data = sales)) # Prices non-negative

Index

∗ data expectations
conditional-expectations, 11
datacomp-expectations, 12
date-expectations, 14
exclusivity-expectations, 15
expect_depends, 16
generic-expectations, 18
label-expectations, 21
pattern-expectations, 24
proportion-expectations, 25
text-expectations, 27
uniqueness-expectations, 28
value-expectations, 30

∗ vector checks
chk-dates, 2
chk-dummy, 3
chk-labels, 5
chk-patterns, 7
chk-text, 8
chk-uniqueness, 9
chk-values, 9

%E>% (global-data), 20

Checks: data frame helpers, 3, 6–10
Checks: date, 14
Checks: labels, 22
Checks: patterns, 24
Checks: text, 28
Checks: uniqueness, 29
Checks: values, 31
chk-dates, 2
chk-dummy, 3
chk-helper, 4
chk-labels, 5
chk-patterns, 7
chk-text, 8
chk-uniqueness, 9
chk-values, 9
chk_ascii (chk-text), 8
chk_blank (chk-values), 9

chk_date_yyyy (chk-dates), 2
chk_date_yyyymm (chk-dates), 2
chk_date_yyyymmdd (chk-dates), 2
chk_dummy (chk-dummy), 3
chk_equals (chk-values), 9
chk_filter (chk-helper), 4
chk_filter_all (chk-helper), 4
chk_filter_any (chk-helper), 4
chk_labels (chk-labels), 5
chk_max_length (chk-patterns), 7
chk_range (chk-values), 9
chk_regex (chk-patterns), 7
chk_text_miss (chk-text), 8
chk_text_nmiss (chk-text), 8
chk_unique (chk-uniqueness), 9
chk_values (chk-values), 9
chk_values(), 4, 19, 26
conditional-expectations, 11

datacomp-expectations, 12
date-expectations, 14
dplyr::join(), 13

exclusivity-expectations, 15
expect_all (generic-expectations), 18
expect_any (generic-expectations), 18
expect_base (conditional-expectations),

11
expect_cond (conditional-expectations),

11
expect_date_yyyy (date-expectations), 14
expect_date_yyyymm (date-expectations),

14
expect_date_yyyymmdd

(date-expectations), 14
expect_depends, 12–15, 16, 19, 22, 24, 26,

28, 29, 31
expect_exclusive

(exclusivity-expectations), 15
expect_labels (label-expectations), 21

32

INDEX 33

expect_make, 17
expect_max_length

(pattern-expectations), 24
expect_prop_gte

(proportion-expectations), 25
expect_prop_lte

(proportion-expectations), 25
expect_prop_nmiss

(proportion-expectations), 25
expect_prop_values

(proportion-expectations), 25
expect_range (value-expectations), 30
expect_regex (pattern-expectations), 24
expect_subset (datacomp-expectations),

12
expect_text_miss (text-expectations), 27
expect_text_nmiss (text-expectations),

27
expect_unique

(uniqueness-expectations), 28
expect_unique_across

(uniqueness-expectations), 28
expect_unique_combine

(uniqueness-expectations), 28
expect_valmatch

(datacomp-expectations), 12
expect_values (value-expectations), 30
Expectations: dates, 3
Expectations: labels, 6
Expectations: patterns, 7
Expectations: text, 8
Expectations: uniqueness, 9
Expectations: values, 10

generic-expectations, 18
get_testdata (global-data), 20
global test data, 11, 13–16, 19, 22, 24, 26,

27, 29, 31
global-data, 20

label-expectations, 21

openxlsx, 23
openxlsx::saveWorkbook(), 23
output_results_excel, 23

pattern-expectations, 24
proportion-expectations, 25

quosure, 21

set_testdata (global-data), 20
str_detect(), 7, 24

test reporter, 11, 13–15, 17, 19, 22, 24, 26,
27, 29, 31

test_dir(), 23
test_file(), 23
testdat.miss, 8, 10, 11, 26, 27, 29, 31
testdat.miss_text, 8, 10, 27, 31
text-expectations, 27

uniqueness-expectations, 28

value-expectations, 30

with_testdata (global-data), 20

	chk-dates
	chk-dummy
	chk-helper
	chk-labels
	chk-patterns
	chk-text
	chk-uniqueness
	chk-values
	conditional-expectations
	datacomp-expectations
	date-expectations
	exclusivity-expectations
	expect_depends
	expect_make
	generic-expectations
	global-data
	label-expectations
	output_results_excel
	pattern-expectations
	proportion-expectations
	text-expectations
	uniqueness-expectations
	value-expectations
	Index

